Fate of neurons following immune-mediated viral clearance


Collapse Biography 

Collapse Overview 
Collapse abstract
Despite the large number of viruses that can infect the human brain, and the growing suspicion that some neurotropic pathogens play a direct or contributory role in chronic neurodegenerative diseases, little is known about the fate of neurons following infection. It has been surmised that neurons can survive an infection and immunity event, resulting in cured cells that are functionally indistinguishable from the pre-infection phonotype, though this has not been experimentally tested. While there is abundant evidence that immunocompetent mice mount a protective response within the CNS that resolves a viral infection, leading to little overt inflammatory damage and apparent impairment-free survival, two critical questions remain unanswered, which are the basis for this proposal. First: do neurons, in fact, survive the anti- viral immune response? Second: If neurons can be cured of a virus, are they functionally competent? These questions will be addressed using a well-characterized mouse system (congenic Cre reporter mice) to follow the consequences of viral infection of neurons over time. Neurons that have been infected with one of two neurotropic RNA viruses (measles or rabies) will be marked by a permanent change in fluorescence signal from red to green. These neurons can then be monitored throughout the infection course in the presence or absence of a competent immune response. Moreover, marked (green) neurons can be isolated by laser capture microdissection for subsequent gene and protein expression analyses. The ability to identify, isolate and characterize actively infected neurons or previously infected neurons that have been cured by the host immune response will allow for more precise studies to define how variables including age, neuronal subtype, virus type, and immune effectors impact on CNS neuron survival and function. Finally, given that this system can be broadly applied to virtually any mouse model of CNS viral infection, we believe there is the potential to enable major advances in the fields of neurovirology and neuropathogenesis.
Collapse sponsor award id
R21NS074006

Collapse Time 
Collapse start date
2011-07-01
Collapse end date
2015-06-30